Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 151
Filtrar
1.
J Clin Immunol ; 44(4): 99, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38619739

RESUMO

Systemic lupus erythematosus (SLE) is a chronic autoimmune disease that is characterized by its large heterogeneity in terms of clinical presentation and severity. The pathophysiology of SLE involves an aberrant autoimmune response against various tissues, an excess of apoptotic bodies, and an overproduction of type-I interferon. The genetic contribution to the disease is supported by studies of monozygotic twins, familial clustering, and genome-wide association studies (GWAS) that have identified numerous risk loci. In the early 70s, complement deficiencies led to the description of familial forms of SLE caused by a single gene defect. High-throughput sequencing has recently identified an increasing number of monogenic defects associated with lupus, shaping the concept of monogenic lupus and enhancing our insights into immune tolerance mechanisms. Monogenic lupus (moSLE) should be suspected in patients with either early-onset lupus or syndromic lupus, in male, or in familial cases of lupus. This review discusses the genetic basis of monogenic SLE and proposes its classification based on disrupted pathways. These pathways include defects in the clearance of apoptotic cells or immune complexes, interferonopathies, JAK-STATopathies, TLRopathies, and T and B cell dysregulations.


Assuntos
Autoimunidade , Lúpus Eritematoso Sistêmico , Humanos , Masculino , Complexo Antígeno-Anticorpo , Autoimunidade/genética , Estudo de Associação Genômica Ampla , Lúpus Eritematoso Sistêmico/genética , Fenótipo , Feminino , Estudos em Gêmeos como Assunto
2.
J Exp Med ; 221(5)2024 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-38530241

RESUMO

NLRP3-associated autoinflammatory disease is a heterogenous group of monogenic conditions caused by NLRP3 gain-of-function mutations. The poor functional characterization of most NLRP3 variants hinders diagnosis despite efficient anti-IL-1 treatments. Additionally, while NLRP3 is controlled by priming and activation signals, gain-of-functions have only been investigated in response to priming. Here, we characterize 34 NLRP3 variants in vitro, evaluating their activity upon induction, priming, and/or activation signals, and their sensitivity to four inhibitors. We highlight the functional diversity of the gain-of-function mutants and describe four groups based on the signals governing their activation, correlating partly with the symptom severity. We identify a new group of NLRP3 mutants responding to the activation signal without priming, associated with frequent misdiagnoses. Our results identify key NLRP3 residues controlling inflammasome activity and sensitivity to inhibitors, and antagonistic mechanisms with broader efficacy for therapeutic strategies. They provide new insights into NLRP3 activation, an explanatory mechanism for NLRP3-AID heterogeneity, and original tools for NLRP3-AID diagnosis and drug development.


Assuntos
Mutação com Ganho de Função , Proteína 3 que Contém Domínio de Pirina da Família NLR , Humanos , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Mutação com Ganho de Função/genética , Inflamassomos/genética , Desenvolvimento de Medicamentos , Síndrome
3.
Artigo em Inglês | MEDLINE | ID: mdl-38438084

RESUMO

BACKGROUND: Immune dysregulation often presents as autoimmunity, inflammation, and/or lymphoproliferation. Several germline genetic defects have been associated with immune dysregulation; they include heterozygous gain-of-function (GOF) mutations in IKZF1, an essential transcription factor for hematopoiesis containing zinc finger domains (ZFs). However, in a large percentage of patients, the genetic origin of their immunedysregulation remains undetermined. OBJECTIVE: A family with 2 members presenting immune dysregulation signs was studied to identify the genetic cause of their disease. METHODS: Whole exome sequencing, analysis of immunologic parameters, and functional assays (including Western blotting, electrophoretic mobility shift assay during the cell cycle, and TH cell differentiation) were performed. RESULTS: The 2 patients carried a novel heterozygous mutation in IKZF1 (IKZF1T398M). IKZF1 heterozygous mutations have previously been shown to be responsible for several distinct human immunologic diseases by directly affecting the ability of ZFs to bind to DNA or to dimerize. Herein, we showed that the IKZF1T398M, which is outside the ZFs, caused impaired phosphorylation of IKZF1, resulting in enhanced DNA-binding ability at the S phase of the cell cycle, reduction of the G1-S phase transition, and decreased proliferation. Confirming these data, similar functional alterations were observed with IKZF1T398A, but not with IKZF1T398D, mimicking dephosphorylation and phosphorylation, respectively. In T lymphocytes, expression of IKZF1T398M led to TH cell differentiation skewed toward TH2 cells. Thus, our data indicate that IKZF1T398M behaves as a GOF variant underlying immune dysregulation. CONCLUSION: Disturbed IKZF1 phosphorylation represents a novel GOF mechanism (GOF by loss of phosphorylation (termed as GOF-LOP) associated with immune dysregulation, highlighting the regulatory role of IKZF1 during cell cycle progression through phosphorylation.

4.
Br J Haematol ; 2024 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-38432067

RESUMO

Kabuki syndrome (KS) is now listed in the Human Inborn Errors of Immunity (IEI) Classification. It is a rare disease caused by KMT2D and KDM6A variants, dominated by intellectual disability and characteristic facial features. Recurrently, pathogenic variants are identified in those genes in patients examined for autoimmune cytopenia (AIC), but interpretation remains challenging. This study aims to describe the genetic diagnosis and the clinical management of patients with paediatric-onset AIC and KS. Among 11 patients with AIC and KS, all had chronic immune thrombocytopenic purpura, and seven had Evans syndrome. All had other associated immunopathological manifestations, mainly symptomatic hypogammaglobinaemia. They had a median of 8 (5-10) KS-associated manifestations. Pathogenic variants were detected in KMT2D gene without clustering, during the immunological work-up of AIC in three cases, and the clinical strategy to validate them is emphasized. Eight patients received second-line treatments, mainly rituximab and mycophenolate mofetil. With a median follow-up of 17 (2-31) years, 8/10 alive patients still needed treatment for AIC. First-line paediatricians should be able to recognize and confirm KS in children with ITP or multiple AIC, to provide early appropriate clinical management and specific long-term follow-up. The epigenetic immune dysregulation in KS opens exciting new perspectives.

6.
Clin Immunol ; 261: 110165, 2024 04.
Artigo em Inglês | MEDLINE | ID: mdl-38423196

RESUMO

Mutations in NFkB pathway genes can cause inborn errors of immunity (IEI), with NFKB1 haploinsufficiency being a significant etiology for common variable immunodeficiency (CVID). Indeed, mutations in NFKB1 are found in 4 to 5% of in European and United States CVID cohorts, respectively; CVID representing almost » of IEI patients in European countries registries. This case study presents a 49-year-old patient with respiratory infections, chronic diarrhea, immune thrombocytopenia, hypogammaglobulinemia, and secondary lymphoma. Comprehensive genetic analysis, including high-throughput sequencing of 300 IEI-related genes and copy number variation analysis, identified a critical 2.6-kb deletion spanning the first untranslated exon and its upstream region. The region's importance was confirmed through genetic markers indicative of enhancers and promoters. The deletion was also found in the patient's brother, who displayed similar but milder symptoms. Functional analysis supported haploinsufficiency with reduced mRNA and protein expression in both patients. This case underscores the significance of copy number variation (CNV) analysis and targeting noncoding exons within custom gene panels, emphasizing the broader genomic approaches needed in medical genetics.


Assuntos
Imunodeficiência de Variável Comum , Irmãos , Masculino , Adulto , Humanos , Pessoa de Meia-Idade , Haploinsuficiência/genética , Variações do Número de Cópias de DNA , NF-kappa B/genética , Imunodeficiência de Variável Comum/genética , Sequências Reguladoras de Ácido Nucleico , Subunidade p50 de NF-kappa B/genética
7.
Sci Immunol ; 9(91): eadj5948, 2024 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-38215192

RESUMO

Defective FAS (CD95/Apo-1/TNFRSF6) signaling causes autoimmune lymphoproliferative syndrome (ALPS). Hypergammaglobulinemia is a common feature in ALPS with FAS mutations (ALPS-FAS), but paradoxically, fewer conventional memory cells differentiate from FAS-expressing germinal center (GC) B cells. Resistance to FAS-induced apoptosis does not explain this phenotype. We tested the hypothesis that defective non-apoptotic FAS signaling may contribute to impaired B cell differentiation in ALPS. We analyzed secondary lymphoid organs of patients with ALPS-FAS and found low numbers of memory B cells, fewer GC B cells, and an expanded extrafollicular (EF) B cell response. Enhanced mTOR activity has been shown to favor EF versus GC fate decision, and we found enhanced PI3K/mTOR and BCR signaling in ALPS-FAS splenic B cells. Modeling initial T-dependent B cell activation with CD40L in vitro, we showed that FAS competent cells with transient FAS ligation showed specifically decreased mTOR axis activation without apoptosis. Mechanistically, transient FAS engagement with involvement of caspase-8 induced nuclear exclusion of PTEN, leading to mTOR inhibition. In addition, FASL-dependent PTEN nuclear exclusion and mTOR modulation were defective in patients with ALPS-FAS. In the early phase of activation, FAS stimulation promoted expression of genes related to GC initiation at the expense of processes related to the EF response. Hence, our data suggest that non-apoptotic FAS signaling acts as molecular switch between EF versus GC fate decisions via regulation of the mTOR axis and transcription. The defect of this modulatory circuit may explain the observed hypergammaglobulinemia and low memory B cell numbers in ALPS.


Assuntos
Hipergamaglobulinemia , Transtornos Linfoproliferativos , Humanos , Apoptose/genética , Centro Germinativo , Transtornos Linfoproliferativos/genética , Serina-Treonina Quinases TOR
8.
J Allergy Clin Immunol ; 153(1): 67-76, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37977527

RESUMO

Chronic nonmalignant lymphoproliferation and autoimmune cytopenia are relevant manifestations of immunohematologic diseases of childhood. Their diagnostic classification is challenging but important for therapy. Autoimmune lymphoproliferative syndrome (ALPS) is a genetically defined inborn error of immunity combining these manifestations, but it can explain only a small proportion of cases. Diagnostic categories such as ALPS-like disease, common variable immunodeficiency, or Evans syndrome have therefore been used. Advances in genetics and increasing availablity of targeted therapies call for more therapy-oriented disease classification. Moreover, recent discoveries in the (re)analysis of genetic conditions affecting FAS signaling ask for a more precise definition of ALPS. In this review, we propose the term autoimmune lymphoproliferative immunodeficiencies for a disease phenotype that is enriched for patients with genetic diseases for which targeted therapies are available. For patients without a current molecular diagnosis, this term defines a subgroup of immune dysregulatory disorders for further studies. Within the concept of autoimmune lymphoproliferative immunodeficiencies, we propose a revision of the ALPS classification, restricting use of this term to conditions with clear evidence of perturbation of FAS signaling and resulting specific biologic and clinical consequences. This proposed approach to redefining ALPS and other lymphoproliferative conditions provides a framework for disease classification and diagnosis that is relevant for the many specialists confronted with these diseases.


Assuntos
Anemia Hemolítica Autoimune , Doenças Autoimunes , Síndrome Linfoproliferativa Autoimune , Imunodeficiência de Variável Comum , Doenças do Sistema Imunitário , Transtornos Linfoproliferativos , Humanos , Síndrome Linfoproliferativa Autoimune/diagnóstico , Síndrome Linfoproliferativa Autoimune/genética , Síndrome Linfoproliferativa Autoimune/terapia , Fenótipo , Receptor fas/genética , Transtornos Linfoproliferativos/diagnóstico , Transtornos Linfoproliferativos/genética , Transtornos Linfoproliferativos/terapia
9.
J Allergy Clin Immunol ; 153(1): 275-286.e18, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37935260

RESUMO

BACKGROUND: Inborn errors of immunity (IEI) with dysregulated JAK/STAT signaling present with variable manifestations of immune dysregulation and infections. Hematopoietic stem cell transplantation (HSCT) is potentially curative, but initially reported outcomes were poor. JAK inhibitors (JAKi) offer a targeted treatment option that may be an alternative or bridge to HSCT. However, data on their current use, treatment efficacy and adverse events are limited. OBJECTIVE: We evaluated the current off-label JAKi treatment experience for JAK/STAT inborn errors of immunity (IEI) among European Society for Immunodeficiencies (ESID)/European Society for Blood and Marrow Transplantation (EBMT) Inborn Errors Working Party (IEWP) centers. METHODS: We conducted a multicenter retrospective study on patients with a genetic disorder of hyperactive JAK/STAT signaling who received JAKi treatment for at least 3 months. RESULTS: Sixty-nine patients (72% children) were evaluated (45 STAT1 gain of function [GOF], 21 STAT3-GOF, 1 STAT5B-GOF, 1 suppressor of cytokine signaling 1 [aka SOCS1] loss of function, 1 JAK1-GOF). Ruxolitinib was the predominantly prescribed JAKi (80%). Overall, treatment resulted in improvement (partial or complete remission) of clinical symptoms in 87% of STAT1-GOF and in 90% of STAT3-GOF patients. We documented highly heterogeneous dosing and monitoring regimens. The response rate and time to response varied across different diseases and manifestations. Adverse events including infection and weight gain were frequent (38% of patients) but were mild (grade I-II) and transient in most patients. At last follow-up, 52 (74%) of 69 patients were still receiving JAKi treatment, and 11 patients eventually underwent HSCT after receipt of previous JAKi bridging therapy, with 91% overall survival. CONCLUSIONS: Our study suggests that JAKi may be highly effective to treat symptomatic JAK/STAT IEI patients. Prospective studies to define optimal JAKi dosing for the variable clinical presentations and age ranges should be pursued.


Assuntos
Síndromes de Imunodeficiência , Inibidores de Janus Quinases , Criança , Humanos , Inibidores de Janus Quinases/uso terapêutico , Estudos Retrospectivos , Estudos Prospectivos , Síndromes de Imunodeficiência/terapia , Resultado do Tratamento
10.
J Allergy Clin Immunol ; 153(1): 297-308.e12, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37979702

RESUMO

BACKGROUND: Elevated TCRαß+CD4-CD8- double-negative T cells (DNT) and serum biomarkers help identify FAS mutant patients with autoimmune lymphoproliferative syndrome (ALPS). However, in some patients with clinical features and biomarkers consistent with ALPS, germline or somatic FAS mutations cannot be identified on standard exon sequencing (ALPS-undetermined: ALPS-U). OBJECTIVE: We sought to explore whether complex genetic alterations in the FAS gene escaping standard sequencing or mutations in other FAS pathway-related genes could explain these cases. METHODS: Genetic analysis included whole FAS gene sequencing, copy number variation analysis, and sequencing of FAS cDNA and other FAS pathway-related genes. It was guided by FAS expression analysis on CD57+DNT, which can predict somatic loss of heterozygosity (sLOH). RESULTS: Nine of 16 patients with ALPS-U lacked FAS expression on CD57+DNT predicting heterozygous "loss-of-expression" FAS mutations plus acquired somatic second hits in the FAS gene, enriched in DNT. Indeed, 7 of 9 analyzed patients carried deep intronic mutations or large deletions in the FAS gene combined with sLOH detectable in DNT; 1 patient showed a FAS exon duplication. Three patients had reduced FAS expression, and 2 of them harbored mutations in the FAS promoter, which reduced FAS expression in reporter assays. Three of the 4 ALPS-U patients with normal FAS expression carried heterozygous FADD mutations with sLOH. CONCLUSION: A combination of serum biomarkers and DNT phenotyping is an accurate means to identify patients with ALPS who are missed by routine exome sequencing.


Assuntos
Síndrome Linfoproliferativa Autoimune , Receptor fas , Humanos , Síndrome Linfoproliferativa Autoimune/diagnóstico , Síndrome Linfoproliferativa Autoimune/genética , Biomarcadores , Variações do Número de Cópias de DNA , Sequenciamento do Exoma , Receptor fas/genética , Proteína de Domínio de Morte Associada a Fas/genética , Mutação
11.
J Allergy Clin Immunol ; 153(1): 203-215, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37793571

RESUMO

BACKGROUND: The autoimmune lymphoproliferative syndrome (ALPS) is a noninfectious and nonmalignant lymphoproliferative disease frequently associated with autoimmune cytopenia resulting from defective FAS signaling. We previously described germline monoallelic FAS (TNFRSF6) haploinsufficient mutations associated with somatic events, such as loss of heterozygosity on the second allele of FAS, as a cause of ALPS-FAS. These somatic events were identified by sequencing FAS in DNA from double-negative (DN) T cells, the pathognomonic T-cell subset in ALPS, in which the somatic events accumulated. OBJECTIVE: We sought to identify whether a somatic event affecting the FAS-associated death domain (FADD) gene could be related to the disease onset in 4 unrelated patients with ALPS carrying a germline monoallelic mutation of the FADD protein inherited from a healthy parent. METHODS: We sequenced FADD and performed array-based comparative genomic hybridization using DNA from sorted CD4+ or DN T cells. RESULTS: We found homozygous FADD mutations in the DN T cells from all 4 patients, which resulted from uniparental disomy. FADD deficiency caused by germline heterozygous FADD mutations associated with a somatic loss of heterozygosity was a phenocopy of ALPS-FAS without the more complex symptoms reported in patients with germline biallelic FADD mutations. CONCLUSIONS: The association of germline and somatic events affecting the FADD gene is a new genetic cause of ALPS.


Assuntos
Síndrome Linfoproliferativa Autoimune , Proteína de Domínio de Morte Associada a Fas , Humanos , Apoptose/genética , Doenças Autoimunes/genética , Síndrome Linfoproliferativa Autoimune/genética , Hibridização Genômica Comparativa , DNA , Receptor fas/genética , Proteína de Domínio de Morte Associada a Fas/genética , Proteína de Domínio de Morte Associada a Fas/metabolismo , Células Germinativas/patologia , Mutação
12.
J Autoimmun ; 142: 103152, 2023 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-38071801

RESUMO

Anti-nuclear antibodies are the hallmark of autoimmune diseases such as systemic lupus erythematosus (SLE) and scleroderma. However, the molecular mechanisms of B cell tolerance breakdown in these pathological contexts are poorly known. The study of rare familial forms of autoimmune diseases could therefore help to better describe common biological mechanisms leading to B cell tolerance breakdown. By Whole-Exome Sequencing, we identified a new heterozygous mutation (p.R594C) in ERN1 gene, encoding IRE1α (Inositol-Requiring Enzyme 1α), in a multiplex family with several members presenting autoantibody-mediated autoimmunity. Using human cell lines and a knock-in (KI) transgenic mouse model, we showed that this mutation led to a profound defect of IRE1α ribonuclease activity on X-Box Binding Protein 1 (XBP1) splicing. The KI mice developed a broad panel of autoantibodies, however in a subclinical manner. These results suggest that a decrease of spliced form of XBP1 (XBP1s) production could contribute to B cell tolerance breakdown and give new insights into the function of IRE1α which are important to consider for the development of IRE1α targeting strategies.

13.
J Invest Dermatol ; 2023 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-38128752

RESUMO

A20 haploinsufficiency is an autoinflammatory disease caused by defective inactivation of the NF-κB pathway. We conducted a systematic literature review of articles reporting patients with TNFAIP3 sequence variants from 2016 to August 2023 following PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) guidelines. Data from 177 patients from 65 articles were retrieved (108 women). The principal features were mucosal ulcers (n = 129); fever (n = 93) followed by gastrointestinal (n = 81); skin features (n = 76); autoimmunity (n = 61), including thyroiditis (n = 25) and lupus (n = 16); and joint involvements (n = 54). Five patients had died at the time of publication. In 54 of 63 patients, CRP was significantly elevated during flares, with a median of 51 mg/l. The most commonly used treatment included corticosteroids and nonsteroidal anti-inflammatory drugs (n = 32), TNF blockers (n = 29), colchicine (n = 28), and methotrexate (n = 14). TNFAIP3 variants impacted the ovarian tumor domain in 92 cases and a Zinc finger domain in 68 cases. Geographic origin, reported sex, and variant type significantly impacted phenotype. A better understanding of the wide A20 haploinsufficiency phenotype could facilitate the diagnosis process. Much remains to be elucidated about pathogenesis and treatment to improve outcome in patients with A20 haploinsufficiency.

14.
Cell Rep Med ; 4(12): 101333, 2023 12 19.
Artigo em Inglês | MEDLINE | ID: mdl-38118407

RESUMO

Gain-of-function mutations in stimulator of interferon gene 1 (STING1) result in STING-associated vasculopathy with onset in infancy (SAVI), a severe autoinflammatory disease. Although elevated type I interferon (IFN) production is thought to be the leading cause of the symptoms observed in patients, STING can induce a set of pathways, which have roles in the onset and severity of SAVI and remain to be elucidated. To this end, we performed a multi-omics comparative analysis of peripheral blood mononuclear cells (PBMCs) and plasma from SAVI patients and healthy controls, combined with a dataset of healthy PBMCs treated with IFN-ß. Our data reveal a subset of disease-associated monocyte, expressing elevated CCL3, CCL4, and IL-6, as well as a strong integrated stress response, which we suggest is the result of direct PERK activation by STING. Cell-to-cell communication inference indicates that these monocytes lead to T cell early activation, resulting in their senescence and apoptosis. Last, we propose a transcriptomic signature of STING activation, independent of type I IFN response.


Assuntos
Interferon Tipo I , Doenças Vasculares , Humanos , Monócitos/metabolismo , Leucócitos Mononucleares/metabolismo , Doenças Vasculares/genética , Doenças Vasculares/metabolismo , Interferon Tipo I/metabolismo , RNA
15.
J Clin Immunol ; 44(1): 2, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-38099988

RESUMO

The DNA polymerase δ complex (PolD), comprising catalytic subunit POLD1 and accessory subunits POLD2, POLD3, and POLD4, is essential for DNA synthesis and is central to genome integrity. We identified, by whole exome sequencing, a homozygous missense mutation (c.1118A > C; p.K373T) in POLD3 in a patient with Omenn syndrome. The patient exhibited severely decreased numbers of naïve T cells associated with a restricted T-cell receptor repertoire and a defect in the early stages of TCR recombination. The patient received hematopoietic stem cell transplantation at age 6 months. He manifested progressive neurological regression and ultimately died at age 4 years. We performed molecular and functional analysis of the mutant POLD3 and assessed cell cycle progression as well as replication-associated DNA damage. Patient fibroblasts showed a marked defect in S-phase entry and an enhanced number of double-stranded DNA break-associated foci despite normal expression levels of PolD components. The cell cycle defect was rescued by transduction with WT POLD3. This study validates autosomal recessive POLD3 deficiency as a novel cause of profound T-cell deficiency and Omenn syndrome.


Assuntos
DNA Polimerase III , Imunodeficiência Combinada Severa , Masculino , Humanos , Lactente , Pré-Escolar , Imunodeficiência Combinada Severa/diagnóstico , Imunodeficiência Combinada Severa/genética , Imunodeficiência Combinada Severa/terapia , Ciclo Celular , Dano ao DNA , Fibroblastos
16.
Br J Haematol ; 203(1): 28-35, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37735545

RESUMO

Since its first description by Evans in 1951, this syndrome has been linked to chronic immune thrombocytopenia with the concurrent or delayed onset of autoimmune haemolytic anaemia or neutropenia. For decades, the evolution of Evans syndrome (ES) has carried a poor prognosis and often resulted in chronic steroid exposure, multiple immune suppressing medications directed against T or B lymphocytes, and splenectomy. This paper presents a new view of ES based on recent advances in genomics which begin to classify patients based on their underlying molecular variants in previously described primary immune disorders. This has opened up new avenues of targeted therapy or bone marrow transplant at rather than broad long-term immune suppression or splenectomy. Importantly, recent studies of the full lifespan of ES suggest that at least 80% of those paediatric patients will progress to various clinical or biological immunopathological manifestations with age despite the resolution of their cytopenias. Those patients merit long-term follow-up and monitoring in dedicated transition programs to improve outcome at the adult age.


Assuntos
Anemia Hemolítica Autoimune , Neutropenia , Púrpura Trombocitopênica Idiopática , Trombocitopenia , Adulto , Humanos , Criança , Anemia Hemolítica Autoimune/diagnóstico , Anemia Hemolítica Autoimune/terapia , Púrpura Trombocitopênica Idiopática/diagnóstico , Púrpura Trombocitopênica Idiopática/terapia , Trombocitopenia/etiologia , Trombocitopenia/terapia
17.
Nat Commun ; 14(1): 3728, 2023 06 22.
Artigo em Inglês | MEDLINE | ID: mdl-37349339

RESUMO

Loss of NBEAL2 function leads to grey platelet syndrome (GPS), a bleeding disorder characterized by macro-thrombocytopenia and α-granule-deficient platelets. A proportion of patients with GPS develop autoimmunity through an unknown mechanism, which might be related to the proteins NBEAL2 interacts with, specifically in immune cells. Here we show a comprehensive interactome of NBEAL2 in primary T cells, based on mass spectrometry identification of altogether 74 protein association partners. These include LRBA, a member of the same BEACH domain family as NBEAL2, recessive mutations of which cause autoimmunity and lymphocytic infiltration through defective CTLA-4 trafficking. Investigating the potential association between NBEAL2 and CTLA-4 signalling suggested by the mass spectrometry results, we confirm by co-immunoprecipitation that CTLA-4 and NBEAL2 interact with each other. Interestingly, NBEAL2 deficiency leads to low CTLA-4 expression in patient-derived effector T cells, while their regulatory T cells appear unaffected. Knocking-down NBEAL2 in healthy primary T cells recapitulates the low CTLA-4 expression observed in the T cells of GPS patients. Our results thus show that NBEAL2 is involved in the regulation of CTLA-4 expression in conventional T cells and provide a rationale for considering CTLA-4-immunoglobulin therapy in patients with GPS and autoimmune disease.


Assuntos
Síndrome da Plaqueta Cinza , Humanos , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Plaquetas/metabolismo , Proteínas Sanguíneas/genética , Antígeno CTLA-4/genética , Antígeno CTLA-4/metabolismo , Síndrome da Plaqueta Cinza/genética , Síndrome da Plaqueta Cinza/metabolismo
18.
Cell Rep ; 42(4): 112378, 2023 04 25.
Artigo em Inglês | MEDLINE | ID: mdl-37060566

RESUMO

The signals controlling marginal zone (MZ) and follicular (FO) B cell development remain incompletely understood. Here, we show that AKT orchestrates MZ B cell formation in mice and humans. Genetic models that increase AKT signaling in B cells or abolish its impact on FoxO transcription factors highlight the AKT-FoxO axis as an on-off switch for MZ B cell formation in mice. In humans, splenic immunoglobulin (Ig) D+CD27+ B cells, proposed as an MZ B cell equivalent, display higher AKT signaling than naive IgD+CD27- and memory IgD-CD27+ B cells and develop in an AKT-dependent manner from their precursors in vitro, underlining the conservation of this developmental pathway. Consistently, CD148 is identified as a receptor indicative of the level of AKT signaling in B cells, expressed at a higher level in MZ B cells than FO B cells in mice as well as humans.


Assuntos
Linfócitos B , Proteínas Proto-Oncogênicas c-akt , Humanos , Camundongos , Animais , Tecido Linfoide , Transdução de Sinais , Baço
19.
J Allergy Clin Immunol ; 151(5): 1391-1401.e7, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36621650

RESUMO

BACKGROUND: Fas ligand (FasL) is expressed by activated T cells and induces death in target cells upon binding to Fas. Loss-of-function FAS or FASLG mutations cause autoimmune-lymphoproliferative syndrome (ALPS) characterized by expanded double-negative T cells (DNT) and elevated serum biomarkers. While most ALPS patients carry heterozygous FAS mutations, FASLG mutations are rare and usually biallelic. Only 2 heterozygous variants were reported, associated with an atypical clinical phenotype. OBJECTIVE: We revisited the significance of heterozygous FASLG mutations as a cause of ALPS. METHODS: Clinical features and biomarkers were analyzed in 24 individuals with homozygous or heterozygous FASLG variants predicted to be deleterious. Cytotoxicity assays were performed with patient T cells and biochemical assays with recombinant FasL. RESULTS: Homozygous FASLG variants abrogated cytotoxicity and resulted in early-onset severe ALPS with elevated DNT, raised vitamin B12, and usually no soluble FasL. In contrast, heterozygous variants affected FasL function by reducing expression, impairing trimerization, or preventing Fas binding. However, they were not associated with elevated DNT and vitamin B12, and they did not affect FasL-mediated cytotoxicity. The dominant-negative effects of previously published variants could not be confirmed. Even Y166C, causing loss of Fas binding with a dominant-negative effect in biochemical assays, did not impair cellular cytotoxicity or cause vitamin B12 and DNT elevation. CONCLUSION: Heterozygous loss-of-function mutations are better tolerated for FASLG than for FAS, which may explain the low frequency of ALPS-FASLG.


Assuntos
Síndrome Linfoproliferativa Autoimune , Humanos , Síndrome Linfoproliferativa Autoimune/genética , Proteína Ligante Fas/genética , Mutação , Biomarcadores , Vitaminas , Receptor fas/genética , Apoptose/genética
20.
Cell Rep Med ; 4(2): 100919, 2023 02 21.
Artigo em Inglês | MEDLINE | ID: mdl-36706754

RESUMO

X-linked chronic granulomatous disease (CGD) is associated with defective phagocytosis, life-threatening infections, and inflammatory complications. We performed a clinical trial of lentivirus-based gene therapy in four patients (NCT02757911). Two patients show stable engraftment and clinical benefits, whereas the other two have progressively lost gene-corrected cells. Single-cell transcriptomic analysis reveals a significantly lower frequency of hematopoietic stem cells (HSCs) in CGD patients, especially in the two patients with defective engraftment. These two present a profound change in HSC status, a high interferon score, and elevated myeloid progenitor frequency. We use elastic-net logistic regression to identify a set of 51 interferon genes and transcription factors that predict the failure of HSC engraftment. In one patient, an aberrant HSC state with elevated CEBPß expression drives HSC exhaustion, as demonstrated by low repopulation in a xenotransplantation model. Targeted treatments to protect HSCs, coupled to targeted gene expression screening, might improve clinical outcomes in CGD.


Assuntos
Doença Granulomatosa Crônica , Transplante de Células-Tronco Hematopoéticas , Humanos , Terapia Genética/efeitos adversos , Doença Granulomatosa Crônica/diagnóstico , Doença Granulomatosa Crônica/genética , Doença Granulomatosa Crônica/terapia , Células-Tronco Hematopoéticas/metabolismo , Inflamação/metabolismo , Interferons/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...